Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Dichloro(propane-1,3-diamine$\kappa^{2} N, N^{\prime}$)platinum(II), dichloro-(propane-1,3-diamine- $\kappa^{2} N, N^{\prime}$)palladium(II) and $\mu-4,9$-diaza-dodecane-1,12-diamine- $\kappa^{2} N^{1}, N^{4}$:$\kappa^{2} N^{9}, N^{12}$-bis[dichloroplatinum(II)]

Mamiko Odoko* and Nobuo Okabe

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan
Correspondence e-mail: odoko@phar.kindai.ac.jp
Received 11 January 2006
Accepted 20 February 2006
Online 18 March 2006
In the title compounds, $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]$, (I), $\left[\mathrm{PdCl}_{2}-\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]$, (II), and $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{26} \mathrm{~N}_{4}\right)\right]$, (III), each metal atom lies in a distorted cis-square coordination geometry. Compounds (I) and (II) are isostructural, and each complex has a mirror plane through the metal atom and the middle C atom of the propane-1,3-diamine ligand. In (III), the binuclear complex $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{spn})\right]$ has an inversion center at the middle of the 4,9-diazadodecane-1,12-diamine (spermine, spn) ligand. The six-membered chelate rings in (III) adopt a chair form, which is unsymmetrical and less flattened than those in (I) and (II). In all three crystal structures, there are intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Comment

cis-Diamminedichloroplatinum(II) (cisplatin) is known as an anticancer agent active against a wide variety of human tumors, especially testicular and ovarian cancers (Siddik, 2003; Zhang \& Lippard, 2003). However, its use is limited because of toxic side effects and the development of resistance in tumor cells. Therefore, it is important to design new $\mathrm{Pt}^{\mathrm{II}}$ compounds with improved pharmacological properties and a broader range of anticancer activity.

On the other hand, it is known that polyamines play an important role in the syntheses of nucleic acids and protein, in the structure of the cell membrane, and in the modulation of neurophysiological function in mammalian systems (Morgan, 1999). Numerous derivatives and analogs of the biogenic polyamines spermidine [N -(3-aminopropyl)butane-3,4-diamine, spd] and spermine [N, N^{\prime}-bis(3-aminopropyl)butane-1,4diamine or 4,9 -diazadodecane-1,12-diamine, spn] have been synthesized with the aim of generating a new type of anticancer drug (Seiler, 2005). The $\mathrm{Pt}^{\mathrm{II}}$ or $\mathrm{Pd}^{\mathrm{II}}$ complexes of these ligands have also been synthesized, their anticancer properties
tested (Teixeira et al., 2004; Marques et al., 2002; McGregor et al., 2002; Hegmans et al., 2001; Amo-Ochoa et al., 1996; Navarro-Ranninger et al., 1992, 1994) and their crystal structures analyzed (Codina et al., 1999). Among them, $\mathrm{Pt}^{\mathrm{II}}$ complexes of spn have been investigated for their antiproliferative and cytotoxic effects, and have been demonstrated to display irreversible anticancer properties against Hera and HSC-3 cell lines, and growth inhibition properties against THP-1 and MOLT-3 cell lines (Teixeira et al., 2004).

(I)

(II)

(III)

The $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ complexes of propane-1,3-diamine (tn) have also been used as model anticancer agents to study the interaction with DNA (Akdi et al., 2005; Alvarez-Valdes et al., 2002; Marzilli et al., 1980). In the present study, we report the crystal structures of the title compounds, namely $\left[\mathrm{PtCl}_{2}(\mathrm{tn})\right]$, (I), $\left[\mathrm{PdCl}_{2}(\mathrm{tn})\right]$, (II), and $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{spn})\right]$, (III).

Compounds (I) and (II) are isostructural (Fig. 1). In each complex, the M^{II} atom $\left(\mathrm{Pt}^{\mathrm{II}}\right.$ or $\left.\mathrm{Pd}^{\mathrm{II}}\right)$ and atom C 2 of the tn ligand lie on a mirror plane. The metal atom is coordinated by two N atoms from the tn ligand and two Cl atoms, which form a slightly distorted cis-square coordination geometry. The $M^{I I}$ atom and the four coordinated atoms are coplanar [the r.m.s. deviation of the fitted atoms is $0.016 \AA$ for (I) and $0.022 \AA$ for

Figure 1
A view of the structures of (I) (left) and (II) (right), showing the atomnumbering schemes. Displacement ellipsoids are drawn at the 50% probability level.
(II)]. The metal atom and the tn ligand form a six-membered chelate ring, which adopts a chair conformation.

The $M^{\text {II }}-\mathrm{Cl}$ and $M^{\text {II }}-\mathrm{N}$ bond lengths in (I) and (II) (Tables 1 and 3) are comparable to those in $\left[\mathrm{PtCl}_{2}(\mathrm{en})\right]$ and $\left[\mathrm{PdCl}_{2}(\mathrm{en})\right]$ (en is ethylenediamine; Iball et al., 1975), and in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ (Milburn \& Truter, 1966) $\left[M^{\mathrm{II}}-\mathrm{Cl}=\right.$ $2.288(8)-2.333(9) \AA$ and $M^{\mathrm{II}}-\mathrm{N}=1.95$ (3)-2.08 (3) $\left.\AA\right]$, although the five-membered chelate rings of the en ligands have smaller $\mathrm{N}-M^{\mathrm{II}}-\mathrm{N}$ bond angles [73 (2)-87 (2) ${ }^{\circ}$] than those of (I) and (II). The shortest intermolecular distance

Figure 2
A view of the crystal packing of (I), showing the centrosymmetric stacking along the b axis. Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Figure 3
A view of the crystal packing of (II), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds along the b axis as dashed lines.
between the metal atoms is 3.646 (4) \AA in (I) and 3.586 (3) \AA in (II), which are considerably longer than those of the en complexes cited above (3.37-3.41 \AA); this difference may be due to the steric hindrance of the propane groups of the tn ligand.

In the crystal packing of (I) and (II), centrosymmetrically related complexes are aligned along the b axis (Fig. 2). The crystal structures are stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Tables 2 and 4) between the amine groups of the tn ligands and the Cl atoms of neighboring complexes along the b and c axes (Figs. 2 and 3), forming lattice-like networks.

In (III), the spn ligand coordinates to the two $\mathrm{Pt}^{\mathrm{II}}$ atoms to form a binuclear complex (Fig. 4). Compound (III) is iso-

Figure 4
A view of the structure of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (vi) $-x,-y+1,-z+2$.]

Figure 5
A view of the crystal packing of (III), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds as dashed lines.
structural with the corresponding $\mathrm{Pd}^{\mathrm{II}}$ complex, viz. $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}-\right.$ (spn)] (Codina et al., 1999). A crystallographic inversion center is located at the middle of the butane chain of the spn ligand. The $\mathrm{Pt}^{\mathrm{II}}$ atom is in a slightly distorted cis-square coordination geometry formed by two N and two Cl atoms. The $\mathrm{Pt}^{\mathrm{II}}$ atom and the four coordinated atoms are coplanar (the r.m.s. deviation is $0.046 \AA$). The coordination bond lengths and bond angles (Table 5) are similar to those of (I). The $\mathrm{Pt}^{\mathrm{II}}$ atom and the tn group of the spn ligand form a sixmembered chelate ring, which adopts a chair form as in (I) and (II). However, the dihedral angles of the $\mathrm{Pt} 1 / \mathrm{N} 1 / \mathrm{N} 2$ and $\mathrm{C} 1 /$ $\mathrm{C} 2 / \mathrm{C} 3$ planes with respect to the $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{N} 2 / \mathrm{C} 3$ plane are 46.4 (2) and 57.9 (4) ${ }^{\circ}$, respectively, indicating a less flattened conformation than those in (I) and (II). The corresponding dihedral angles are 24.3 (2) and 62.1 (5) ${ }^{\circ}$ for (I), and 22.2 (1) and $62.1(3)^{\circ}$ for (II), respectively. In addition, the torsion angles of the chelate rings (Table 5) show an unsymmetrical conformation around the $\mathrm{Pt}^{\mathrm{II}}$ atom.

In the crystal packing of (III), there are intermolecular N $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 6) between the primary amine groups of the spn ligand and the Cl atoms of neighboring complexes along the b axis, and between the secondary amine groups and the Cl atoms of neighboring complexes along the c axis, forming a three-dimensional network (Fig. 5).

Experimental

For the preparation of (I), propane-1,3-diamine dihydrochloride $(5 \mathrm{mg})$ was dissolved in $90 \%(v / v)$ dimethylformamide (DMF)/water (5 ml) and added to a solution of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right](14 \mathrm{mg})$ in DMF $(0.1 \mathrm{ml})$. Colorless crystals appeared after three months on evaporation of this mixture. For the preparation of (II), propane-1,3-diamine dihydrochloride (5 mg) was dissolved in water $(5 \mathrm{ml})$, and $\mathrm{PdCl}_{2}(6 \mathrm{mg})$ in a $2 M \mathrm{NaCl}$ aqueous solution $(0.1 \mathrm{ml})$ and $\mathrm{AgNO}_{3}(5.8 \mathrm{mg})$ dissolved in water (0.1 ml) were added. Brown needle-like crystals appeared from this mixture within one week. For the preparation of (III), spermine phosphate $(5 \mathrm{mg})$ dissolved in a $50 \%(v / v) \mathrm{DMF} / 1 \mathrm{M} \mathrm{NaCl}$ aqueous solution (5 ml) was added to $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right](2.6 \mathrm{mg})$ dissolved in water $(0.1 \mathrm{ml})$. Colorless platelet crystals appeared after five months on evaporation of this mixture.

Compound (I)

Crystal data

$\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]$	Mo $K \alpha$ radiation $M_{r}=340.11$
Cell parameters from 4958	
Orthorhombic, Pbcm	reflections
$a=8.36(1) \AA$	$\theta=3.1-27.4^{\circ}$
$b=7.292(8) \AA$	$\mu=18.36 \mathrm{~mm}^{-1}$
$c=12.950(5) \AA$	$T=296 \mathrm{~K}$
$V=789.5(13) \AA^{3}$	Platelet, colorless
$Z=4$	$0.20 \times 0.10 \times 0.05 \mathrm{~mm}$
$D_{x}=2.861 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	
Rigaku R-AXIS RAPID	
\quad diffractometer	945 independent reflections
ω scans	573 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
Absorption correction: multi-scan	$R_{\text {int }}=0.020$
$\quad(A B S C O R ;$ Higashi, 1995)	$\theta_{\max }=27.4^{\circ}$
$\quad T_{\text {min }}=0.152, T_{\max }=0.401$	$k=-10 \rightarrow 10$
7821 measured reflections	$l=-9 \rightarrow 9$
	$l=-16 \rightarrow 16$

Orthorhombic, Pbcm
$a=8.36$ (1) A
$b=7.292$ (8) A
$V=789.5(13) \AA^{3}$
$Z=4$
D_{x}

Rigaku R-AXIS RAPID
ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

7821 measured reflections

945 independent reflections
reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {in }}$
$\theta_{\text {max }}=27.4$
$k=-9 \rightarrow 9$
$l=-16 \rightarrow 16$

Refinement

Refinement on $F^{2} \quad w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.020 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$

$$
S=1.10
$$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.020 P)^{2}\right. \\
\quad \\
\quad+0.2145 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.88 \text { e } \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.81 \mathrm{e}^{-3}
\end{aligned}
$$

H -atom parameters constrained

Table 1
Selected geometric parameters ($\AA^{\circ},^{\circ}$) for (I).

$\mathrm{Pt} 1-\mathrm{N} 1$	$2.040(3)$	$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.3295(17)$
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{N} 1^{\mathrm{i}}$	$93.0(2)$	$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$92.99(9)$
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	$86.98(13)$		
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	$28.3(4)$	$\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-50.5(5)$

Symmetry code: (i) $x, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.90	2.65	$3.369(5)$	138
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\text {iii }}$	0.90	2.48	$3.349(6)$	164
Symmetry codes: (ii) $-x,-y,-z ;$ (iii) $-x, y+\frac{1}{2}, z$				

Compound (II)

Crystal data
$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right]$
$M_{r}=251.45$
Orthorhombic, Pbcm
$a=8.386$ (7) \AA
$b=7.167$ (5) \AA
$c=12.88$ (1) \AA
$V=774.1(10) \AA^{3}$
$Z=4$
$D_{x}=2.158 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Rigaku R-AXIS RAPID	650 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
\quad diffractometer	$R_{\text {int }}=0.022$
ω scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: multi-scan	$h=-10 \rightarrow 10$
$\quad(A B S C O R ;$ Higashi, 1995)	$k=-9 \rightarrow 8$
$T_{\min }=0.645, T_{\max }=0.861$	$l=-16 \rightarrow 16$

$T_{\min }=0.645, T_{\max }=0.86$
7656 measured reflections
923 independent reflections

Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$\mathrm{Pd} 1-\mathrm{N} 1$	$2.036(2)$	$\mathrm{Pd} 1-\mathrm{Cl} 1$	$2.3296(15)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 1^{\mathrm{i}}$	$93.52(13)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$177.09(5)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$86.42(9)$	$\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$93.49(8)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 1$	$26.0(2)$	$\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-49.0(2)$

Symmetry code: (i) $x, y,-z+\frac{1}{2}$.

Mo $K \alpha$ radiation

Cell parameters from 5562
reflections
$\theta=3.2-27.4^{\circ}$
$\mu=3.00 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, brown
$0.15 \times 0.05 \times 0.05 \mathrm{~mm}$

$$
\begin{aligned}
& 650 \text { reflections with } F^{2}>2 \sigma\left(F^{2}\right) \\
& R_{\text {int }}=0.022 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-9 \rightarrow 8 \\
& l=-16 \rightarrow 16
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.043$
$S=1.02$
923 reflections
41 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0243 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\max }=0.26 \AA^{-3} \rho_{\min }=-0.60 \AA^{-3}$

Table 4
Hydrogen-bond geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.90	2.61	$3.359(3)$	141
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots 1^{\text {iii }}$	0.90	2.47	$3.334(3)$	162

Symmetry codes: (ii) $-x,-y,-z$; (iii) $-x, y+\frac{1}{2}, z$.

Compound (III)

Crystal data

$\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{10} \mathrm{H}_{26} \mathrm{~N}_{4}\right)\right]$
$M_{r}=734.31$
Monoclinic, P_{2} / n
$a=8.86$ (1) \AA 。
$b=8.018(6) \AA$
$c=12.93$ (1) \AA
$\beta=92.09(4)^{\circ}$
$V=917.9(14) \AA^{3}$
$Z=2$

Data collection

Rigaku R-AXIS RAPID
 diffractometer
 ω scans
 Absorption correction: multi-scan
 (ABSCOR; Higashi, 1995)
 $T_{\text {min }}=0.089, T_{\text {max }}=0.455$
 9030 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.076$
$S=1.05$
2105 reflections
92 parameters
H -atom parameters constrained
Table 5
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (III).

$\mathrm{Pt} 1-\mathrm{N} 1$	$2.013(5)$	$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.310(3)$
$\mathrm{Pt} 1-\mathrm{N} 2$	$2.047(5)$	$\mathrm{Pt} 1-\mathrm{Cl} 2$	$2.312(2)$
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{N} 2$	$91.0(2)$	$\mathrm{N} 2-\mathrm{Pt} 1-\mathrm{Cl} 2$	$86.94(15)$
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{Cl} 1$	$88.44(14)$	$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl} 2$	$93.69(7)$
$\mathrm{N} 2-\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1$	$-53.6(4)$	$\mathrm{Pt} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$65.1(5)$
$\mathrm{N} 1-\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{C} 3$	$49.7(3)$	$\mathrm{Pt} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$-60.3(5)$

All H atoms were located in difference Fourier maps, and were then placed at idealized positions and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA, \mathrm{~N}-\mathrm{H}$ distances for the primary amine groups of $0.90 \AA$ and for the secondary amine groups of $0.91 \AA$, and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}$ (carrier atom).

Table 6
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\text {iv }}$	0.90	2.48	$3.376(5)$	177
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\mathrm{iv}}$	0.90	2.78	$3.261(5)$	115
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 2^{\mathrm{v}}$	0.91	2.58	$3.309(6)$	138

Symmetry codes: (iv) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (v) $-x,-y,-z+2$.

For all compounds, data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Watkin et al., 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (I) and (II), and SHELXS97 (Sheldrick, 1997) for (III); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1247). Services for accessing these data are described at the back of the journal.

References

Akdi, K., Vilaplana, R. A., Kamah, S. \& Gonzalez-Viĺchez, F. (2005). J. Inorg. Biochem. 99, 1360-1368.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Alvarez-Valdes, A., Perez, J. M., Lopez-Solera, I., Lannegrand, R., Continente, J. M., Amo-Ochoa, P., Camazon, M. J., Solans, X., Font-Bardia, M. \& Navarro-Ranninger, C. (2002). J. Med. Chem. 45, 1835-1844.
Amo-Ochoa, P., Gonzalez, V. M., Perez, J. M., Masaguer, J. R., Alonso, C. \& Navarro-Ranninger, C. (1996). J. Inorg. Biochem. 64, 287-299.
Codina, G., Caubet, A., Lopez, C., Moreno, V. \& Molins, E. (1999). Helv. Chim. Acta, 82, 1025-1037.
Hegmans, A., Qu, Y., Kelland, L. R., Roberts, J. D. \& Farrell, N. (2001). Inorg. Chem. 40, 6108-6114.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Iball, J., MacDougall, M. \& Scrimgeour, S. (1975). Acta Cryst. B31, 1672-1674.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
McGregor, T. D., Hegmans, A., Kasparkova, J., Neplechova, K., Novakova, O., Penazova, H., Vrana, O., Brabec, V. \& Farrell, N. (2002). J. Biol. Inorg. Chem. 7, 397-404.
Marques, M. P. M., Girao, T., Pedroso de Lima, M. C., Gameiro, A., Pereira, E. \& Garcia, P. (2002). Biochim. Biophys. Acta, 1589, 63-70.
Marzilli, L. G., Chalilpoyil, P., Chiang, C. C. \& Kistenmacher, T. J. (1980). J. Am. Chem. Soc. 102, 2480-2482.
Milburn, G. H. W. \& Truter, M. R. (1966). J. Chem. Soc. A, pp. 1609-1616.
Morgan, D. M. L. (1999). Mol. Biotechnol. 11, 229-250.
Navarro-Ranninger, C., Ochoa, P. A., Perez, J. M., Gonzalez, V. M., Masaguer, J. R. \& Alonso, C. (1994). J. Inorg. Biochem. 53, 177-190.

Navarro-Ranninger, C., Zamora, F., Perez, J. M., Lopez-Solera, I., MartinezCarrera, S., Masaguer, J. R. \& Alonso, C. (1992). J. Inorg. Biochem. 46, 267279.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2005). CrystalStructure. Version 3.7. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Seiler, N. (2005). Pharmacol. Ther. 107, 99-119.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siddik, Z. H. (2003). Oncogene, 22, 7265-7279.
Teixeira, L. J., Seabra, M., Reis, E., Girao da Cruz, M. T., Pedroso de Lima, M. C., Pereira, E., Miranda, M. A. \& Marques, M. P. M. (2004). J. Med. Chem. 47, 2917-2925.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.

